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A model study is conducted on the prediction of the elastic longitudinal modulus ECL of a 
unidirectional fibre reinforced composite. It is assumed in our model that the fibres are aligned 
in the uniaxial loading direction and that the representative volume element (RVE) consists of 
three coaxial cylinders, namely the fibre, the interphase and the bulk matrix. The interphase 
represents the third phase developed between the constituent phases of the composite and 
it is characterized by mechanical imperfections, physicochemical interactions and limited 
mobility of macromolecules due to their absorption on the filler surface. Thus the interphase 
properties are varied within this third phase in an unknown way. In the present study it is 
supposed that the elastic modulus of the interphase material E~ is varied along the thickness 
following an exponential law of variation. Moreover, the interphase thickness is determined 
according to existing theory which is based on thermal capacity measurements. Predicted ECL 
values agree well with respective experimental results. In addition the effect of an abrupt 
variation of the elastic modulus at the fibre surface on EcL is considered. Results showed that 
this type of variation is of minor importance in predicting Ec,. 

1. In troduc t ion  
In a fibre reinforced composite the fibres bear the 
major fraction of the load. However, one of  the most 
important factors affecting the reinforcement mech- 
anism is the nature and quality of the fibre-matrix 
adhesion [1-4]. In fact the loads are transferred from 
the fibres to the matrix through an interfacial region, 
often called the interphase [5-10]. 

In real composites, around an inclusion embedded 
in a matrix a rather complex situation develops, con- 
sisting of areas of imperfect bonding, mechanical 
stresses due to shrinkage, high stress gradients or 
even stress singularities due to the geometry of the 
inclusion, voids, microcracks etc. Thus, the presence 
of the reinforcement into the polymer material results 
in an imperfection in the polymer structure. More 
precisely, absorption interaction restricts the segmen- 
tal mobility and affects molecular packing in the layer 
of the polymeric matrix which is in contact with the 
filler surface. In such a case the polymer between two 
fillers consists of (i) a boundary layer which is called 
boundary interphase or simply interphase with its own 
properties and (ii) of unchanged matrix. 

Although the thickness of an interphase is of  the 
order of several hundred nanometres, its existence is 
of paramount importance since it strongly affects the 
relaxation properties of polymeric composites. For 
example [11], the glass transition, Tg of filled polymers 
depends linearly on the fraction of the polymer, U~, in 

the boundary interphase; i.e. 

Tgr = Tgo + ATU~ (1) 

where Tg is the glass transition temperature, the 
indices f and o refer to the filled and unfilled polymer 
respectively and AT is a constant corresponding to the 
increase in Tg for the system where all of  the polymer 
is in the boundary layer (U~ = 1). Also it was estab- 
lished [11] that in the case where Tg values of the 
polymer matrix and interphase material differ by 
20 to 40~ then two Tg values corresponding to the 
unchanged polymer matrix and the boundary inter- 
phase may be experimentally observed. This depends 
on the boundary layer concentration - which in turn 
depends on filler concentration - and on the con- 
ditions of deformation. 

Especially in the case of short fibre composites, the 
interphase determines the critical length and hence the 
efficiency of reinforcement. Moreover, it plays an 
important role on the shear and off-axis properties of 
aligned fibre composites [12]. 

Interfacial conditions strongly affect the tensile 
bebaviour of unidirectional metal matrix composites 
[13-15]. In this type of composites interfacial reaction 
is one of the main reasons for reducing composite 
strength [16-22]. 

It is possible by means of thermal capacity measure- 
ments to determine the effective thickness of the 
boundary interphase. [23]. More precisely, as the filler 
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volume fraction is increased, the jump in thermal 
capacity ACp in the glass transition region is reduced. 
This is a definite indication that a certain number 
of macromolecules close to the rigid surface of the 
inclusions is excluded from the cooperative process of 
the glass transition. The portion of these macromol- 
ecules, 2, is given by the relation 

2 = 1 ACp~ (2) 
Aq 

where ACp f and ACp ~ is the thermal capacity jump for 
the filled and unfilled polymer respectively. Then, the 
thickness of the boundary interphase can be  found 
from the equation 

(Ar  + r r ) 3  1 = Ur (3) 
- -  2 1  - -  Ur r f  

where q, Ar and Ur stand for the fibre, the interphase 
thickness and the fibre volume fraction respectively. 

Apart from the above described experimental method, 
a large number of other experimental methods, usually 
spectroscopic, have been developed for determining 
the extent of the boundary interphase. Also, math- 
ematical models have been developed to predict the 
mechanical and/or thermal behaviour of FRP. A brief 
outline of the various predictive theories is given by 
Paipetis [24]. In all these models, several general 
assumptions were made such as : (1) The ply is macro- 
scopically homogeneous, linearly elastic and generally 
orthotropic or transversely isotropic; (2) the fibres 
are linearly elastic and homogeneous; (3) the matrix 
material is linearly elastic and homogeneous; (4) the 
fibre and matrix are free of voids; (5) there is complete 
bonding at the interface of the constituent materials 
and there is no transition region between them; (6) the 
ply is initially in a stress free state; and (7) the fibres 
are either regularly spaced and/or aligned. 

Models can be divided into three main categories 
depending on the method followed in developing each 
one of them; namely: (a) self consistent model methods" 
[25-35]; (b) variational methods [36-41]: (c) exact 
methods [42-51]. However it remains the problem that 
all the above models are unrealistic because of the 
assumptions made initially. A better approach has 
been made by models considering an RVE consisting 
of three phases i.e. the filler, the interphase and the 
matrix in the form of either concentric spheres in the 
case of particulates or in the form of coaxial cylinders 
for the fibre composites [52-59]. 

In the present paper a theoretical model is devel- 
oped for the prediction of the elastic longitudinal 
modulus of elasticity EcL of a unidirectional fibre 
reinforced composite. This model is consisted of three 
co-axial cylinders each one of them representing the 
fibre, the interphase and the matrix respectively. It is 
assumed that the fibre and matrix have well-defined 
properties while the interphase properties are varied 
along its thickness following an exponential law of 
variation. Moreover, the interphase thickness may be 
determined by means of thermal capacity measure- 
ments [23]. Two cases have been considered. In the 
first case a continuous variation of the elastic modu- 
lus, at the fibre-interphase common surface, was 
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Figure 1 (a) Representative volume element (RVE) of the model 
considered and (b) its cross-sectional area. 

assumed while in the second case an abrupt variation 
in the elastic modulus at the same point has been 
considered. The results derived by considering these 
two cases were compared with other theories as well as 
with experimental results. 

2 .  T h e  m o d e l  

The transition from the microscopic level to the 
macroscopic one, i.e. to that of macroscopically or 
statistically homogeneous composite, is usually 
obtained through the concept of the representative 
volume element (RVE), i.e. a part of the composite 
sufficiently large to possess the same average proper- 
ties as the bulk of the material. 

Fig. l a shows the representative volume element 
(RVE) of the model considered, whose cross-sectional 
area is shown in Fig. lb. 

If we denote by rr, q, rm the outer radii of the fibre, 
the interphase and the matrix circular sections respect- 
ively, then the fractions of the respective faces are 
given by 

- - 

g f  --~ _.~ - g i  - 2 S m  - 2 
rm r m r m 

with U m =  (1 - U r -  U~) (4) 

where U denotes the volume fraction and the indices 
f, i and m correspond to the fibre, interphase and 
matrix respectively. 

Following the same procedure described in a 
previous publication [58], the following expression for 
EcL is obtained 

1 
;~mEc Le2 rdr = ~f0f[8C~(1 - v f -  2v~) 

+ r~ 1 (2A~(1 + vi) + e  2]rdr flf \ 
r 4 

+ 8Ci2(1 - vi - 2v~) + Eizc) r dr 
N 

/ 

1 (2A~m (1 + Vm) 

\ 

+ 8C~(l -- v~ 2v~) + E2~2~ r dr (5) 
/ 



where: ~ = ~,,r = ez.m ~ -  ez, i is the axial strain for each 
of  the constituents o f  the  composite,  A, B, C are 
constants  to be determined, v is Poisson's  ratio and 
indices f, i, m state for the fibre, interphase and matrix 
respectively. 

Next  we define parameters  ~ and ]/ 

E i ( r f )  v i ( r f )  
c~ = f l  - ( 6 )  

Er vr 

For  ~ = fi = 1 a cont inuous  variat ion o f  the 
elastic modulus  and the Poisson's  ratio is obtained at 
r = r r. On the other  hand, for a = Em/Er  and 
fl = Vm/V r the two-phase model  (fibre-matrix) is 
obtained. 

The following relationship between ~ and fi is 
assumed to exist 

k 
= ~ + 2 (7) 

where k,  2 are constants  which can be determined 
from the following conditions. 

At  r = rr 

f o r  0~ = 

for ~ = 

it follows that 

k _ 

1 ~ / 3  = 1 
(8) 

Em/Er ~ /3 = Vm/V~ 

1 - E ~ / E f  2 - 

1 - v r / v  m 

V f / V  m - -  E m / E  f 
(9) 

1 - ' u f / v  m 

where R(r)" is given by 

1 - -  r / r  i e ~ ~/r~) 
R ( r )  = 1 -- rd r  i e  ~1 ~f/~l rr ~ r ~ r i (14) 

I f  we now introduce the parameter  r '  such as 

r' = r/r  i (15) 

then Relation 13 may  be written in the form 

E~(r') 

Vi(r') 

- 

= E m +  (1 - U e ( l - V ) ) J ( 1  -- r ' e  (~-/)) 

= Vm + ( ( l ( ~ - f  - -  Vm)  ) ~ e ~ )  ) (1 - r ' e  (I ")) 

(16) 

where U is given by 

u = < + u U  U ~ < r ' v l  (17) 

2.1 .  D e t e r m i n a t i o n  o f  c o n s t a n t s  Ak, Bk, Ck 
(k = f, i, m)  

The boundary  condit ions 

Ei  ( r i )  = E m V i ( r i )  = 73 m 
(18) 

E i ( r f )  = 0~Ef v i ( r f )  = f l v f  

are taken into account  along with the condit ions 

r f  O'r, f ~-- 0"r, i 

r i 0"r, i ~ O'r. m 

~- r f  b/r, f ~ L/r, i 

~-- r i L/r,i ~ Ur, m 

= r m 0"r, m = 0 

Cr = � 8 9  - -  Uc)F 

Cm -- ~Uf f  

At r 

An  exponential  variat ion for Ei(r ) and vi(r) is At  r 

considered At r 

E i ( r  ) = A E �9 r"  e cE.r + BE ( 1 0 )  At I" 

v i(r) = A v - r ' e  Cv'r + Bv A t r  

where constants  A z ,  BE, CE and Av, Bv, Cv can be we obtain 
evaluated f rom the boundary  conditions:  

(i) At  r = r i A i = A m = Fr~ 

Ei(ri) = Em V i  (ri) = v~ Ci = 

d E i ( r ) / d r  = 0 (11) where F i s  given by 

(19) 

(20) 

F = 
aErvr(1 - fl)e 

[a(1 - Ur)(1 -- vf - -  2v~) + Ur(1 - fivr - 2flzv~) + flvf + 1] 
(21) 

(ii) At  r = rf 

E i ( r f )  = 0~Ef v i ( r f )  = f l v f  

Thus the following results are obtained 

A E = ( a E f -  E m ) / ( r  f e -(rf/q) - -  r i e 1) 

A v  = ( f l v f  - V m ) ( r f e  (rf/ri) - -  ri e - l )  
02) 

BE = E m -- c -l B v = v m -- e 1 

C E = 1 / r  i C v = 1 / r  i 

Introducing now Ak, Bk, Ck (k = E, v) in Equat ion 10 
we obtain for Ei (r) and vi (r) 

E i ( r  ) = E m q-  ( ~ E f  - E m ) R ( r )  
(13) 

v i ( r )  = V m -~- (fi 'Uf - -  V m ) R  ( r )  

EcL can be evaluated by introducing these constants  
into Equat ion  5 a n d  taking into account  the final 
expression for E~(r) given by Equat ion 13. 

For  the special case where ~ = fl = 1, Relation 5 
takes the simple form 

2 r i  

E C L =  E m U m + E f  U f  -~- ~ f l  E i ( r )  r dr (22) 
F m f 

3. Experimental procedure 
The material used in the present study was a unidirec- 
tional glass fibre composi te  (Permaglass XE5/1, 
Permali Ltd., UK)  consisting o f  a epoxy matrix and 
reinforced with long E-glass fibres. The matrix 
material was based on a diglycidyl ether o f  bisphenol 
A together with an aromat ic  amine hardener  (Araldite 
M Y  750/HT972, Ciba-Geigy, UK).  The glass fibres 

397 



I 
I 

o ; 

7 
c ~ i m _ _ _  

X! 

i 

-40 

T -  

t~  
0 transition 

c u r v e  
\ i 

I 

i / / J 

! i ' 

i 
i i I 

glassy curve 
I 

I _ A _  i _ _  
-20 0 (Tg) z0 40 

Temperature (o C) 

! 

Figure 2 A typical DSC-trace for the specific heat capacity jump 
ACp at the glass transition region of  E-glass fibre epoxy composites 
and the mode of evaluation of  &Cp. 

had a diameter of 1.2 x 10 5 m and were contained 
at a volume fraction Uf = 0.65. The volume fraction 
Uf was determined, as customary, by igniting samples 
of the composite and weighting the residue, which 
gave the weight fraction of glass as 79.6 _+ 0.28%. 
This and the measured values of the relative den- 
sities of permaglass (0g = 2.55) and of the epoxy 
(Qe = 1.20) gave the value Uf = 0.65. Complete 
descriptions of the material and its tensile creep 
properties are given by Theocaris and Papanicolaou 
[54, 60]. In order to determine the specific heat capacity 
values at the glass transition region, chip specimens 
with a 0.004m diameter and thicknesses varying 
between 0.001 and 0.0015m made either of the fibre 
composite with various values of Ur or of the matrix 
material, were tested on a differential scanning calor- 
imetry (DSC) thermal analyser. 

4. E v a l u a t i o n  of  i n t e r p h a s e  
c h a r a c t e r i s t i c s  

Fig. 2 shows a typical DSC trace for the specific heat 
capacity jump ACp at the glass-transition region of 
E-glass fibre epoxy composites and the mode of evalu- 
ation of ACp. Values from the values of AC~ and ACp ~ 
the weight factor, 2, dan be determined from Equation 
2 and consequently the interphase thickness Ar can be 
found from Equation 3. Thus, since 

- r p  
ri = rr + Ar and Ui - r2 

m 

the respective values of U~ and ri for the various fibre- 
volume contents can be determined. These values are 
given in Table I. 

5. V a r i a t i o n  of  E i (r)  - m o d u l u s  
In a previous paper [58], four different laws of vari- 
ation of Ei(r) modulus, namely, a linear, a parabolic, 
an hyperbolic and a logarithmic, have been considered 
and their effect on the overall value of the longitudinal 
modulus of the composite EcL had been investigated. 
In all cases it was assumed that E~(r), at r = rr, equals 
El. However, this condition is hardly satisfied in real 
composites. Depending on the interfacial conditions 
one can expect an abrupt variation of the elastic 
modulus at the fibre-interphase common surface 
(r = rf). This condition is fulfilled by the present 
model which takes into account this possibility through 
the parameter 

O~ = E i ( r f ) / E  f 

Fig. 3 shows the mode of variation of Ei(r) modulus 
as a function of the polar radius, r, according to the 
exponential law expressed by Equation 13 and for 
different values of the parameter cc 

6. E f f e c t  o f  t h e  m o d e  o f  
E i ( r )  - v a r i a t i o n  o n  ECL 

Values can be obtained by introducing the calculated 
values of E~(r) into Equation 5. Table II shows pre- 
dicted EcL values for different fibre volume fractions 
and for different s-values. From these values it 
becomes clear that EcL values are insignificantly 
influenced by the parameter ~. This result agrees well 
with the conclusion derived by Theocaris et al. [58] 
according to which the infinitesimal size of the extent 
of interphase, makes the modulus of the composite 
insensitive to the mode of variation of E(r) modulus. 
However, a strong effect of El (r) mode of variation and 
especially of the elastic modulus abrupt variation of 
r = r r on the stress and strainfields around thefibre is 
expected. This effect will be the subject of future work. 

Predicted EcL values derived from our model for the 
case ~ = /~ = 1 were compared with respective values 
derived from our previous models [58] along with 
those derived from the unfolding model [61] as well as 
with experimental results from the literature [62, 63] 
and tabulated in Table I. It can be observed that these 

T A B L E  I Predicted ECL values derived from the present model for the case ~ = fl = i as compared with respective values from the 
literature 

U r U i ( x  103) r i Mixture Parabolic Exponential Unfolding Reference Reference 
(#m) law law law model [63] [62] 

0.0 0 6.0 3.50 3.50 3.50 3.50 
0.10 1.2 6.036 10.35 10.38 9.90 10.36 
0.20 4.92 6.097 17.20 17.31 16.65 17.22 
0.30 11.09 6.110 24.05 24.30 23.48 24.07 
0.40 ! 9.68 6.146 30.90 31.35 30.23 30.92 
0.50 30.75 6.182 37.75 38.45 37.27 37.77 
0.60 44.28 6.217 44.60 45.60 44.17 44.62 
0.65 52.0 6.235 48.03 49.13 47.65 48.13 
0.70 60.27 6.254 51.45 52.81 51.20 51.47 
0.80 78.72 6.288 58.30 60.08 58.27 58.31 
0.90 99.63 6.323 65.15 67.39 65.37 65.16 

3.45 
10.41 
17.38 

38.28 
45.24 48.14 4- 0.82 

52.15 4- 0.89 
56.16 4- 0.96 
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Figure 3 Mode of variation of Ei(r ) modulus 
as a function of the polar radius, r, according to 
the exponential law expressed by Equation 13 
and for different values of the parameter c~. 
uf = 0.50. 

va lues  differ  ins igni f icant ly  a n d  a l m o s t  co inc ide  wi th  

e x p e r i m e n t a l  va lues  t aken  f r o m  the  l i t e ra tu re  [62, 63], 

Fig.  4 shows  the  v a r i a t i o n  o f  Ei ( r  ) m o d u l u s  as a 

f u n c t i o n  o f  the  p o l a r  r ad ius  r, a c c o r d i n g  to d i f ferent  

laws o f  va r i a t i on .  In  the  case  o f  the  e x p o n e n t i a l  law 

o f  v a r i a t i o n  e = ~ = 1 was  t a k e n  in o r d e r  fo r  c o m -  

p a r i s o n  to be m a d e  wi th  the  o t h e r  mode l s .  I t  can  be 
o b s e r v e d  tha t  va lues  de r ived  f r o m  the  e x p o n e n t i a l  law 

lie i n b e t w e e n  those  de r ived  by the  p a r a b o l i c  law and  

tfiose de r i ved  by  the  u n f o l d i n g  m o d e l .  

F ina l ly  p r e d i c t e d  EcL va lues  for  c~ = /~ = 1 are  

p lo t t ed  aga ins t  Ur in Fig .  5. In  the  s a m e  f igure  pre-  

d ic ted  va lues  f r o m  o t h e r  theor ies ,  as well  as exper i -  

m e n t a l  values ,  a re  p lo t t ed  fo r  c o m p a r i s o n .  I t  c an  be 

seen tha t  there  is a g o o d  a g r e e m e n t  b e t w e e n  t h e o r y  

and  expe r imen t .  

T A B L E  II Predicted ECL values for different fibre volume fractions and for different c~ values 

fl 1.750 1.678 1.561 1.459 1.369 1.290 1.219 1. 156 1.099 1.047 1.000 

0.046 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 

Vf 

0.10 9.89 9.94 10.05 10.12 10.14 10.12 10.07 10.01 9.95 9.91 9.90 
0.20 16.57 16.66 16.85 16.98 17.03 17.00 16.92 i6.82 16.73 16.66 16.65 
0.30 23.25 23.37 23.61 23.79 23.86 23.84 23.75 23.64 23.53 23.46 23.45 
0.40 29.92 30.06 30.35 30.56 30.66 30.65 30.57 30.47 30.37 30.31 30.31 
0.50 36.59 36.74 37.05 37.29 37.41 37.43 37.38 37.31 37.23 37.20 37.23 
0.60 43.25 43.41 43.72 43.98 44.13 44.19 44.18 44.15 44.12 44.13 44.19 
0.65 46.59 46.74 47.05 47.31 47.47 47.56 47.58 47.58 47.58 47.61 47.69 
0.70 49.92 50.07 50.38 50.63 50.81 50.92 50.97 51.00 51.04 51.10 51.21 
0.80 56.58 56.73 57.01 57.26 57.46 57.62 57.75 57.87 57.98 58.12 58.28 
0.90 63.24 63.38 63.62 63.86 64.09 64.31 64.52 64.74 64.95 65.17 65.40 
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7. Conclusions 
A theoretical model has been developed for the pre- 
diction of  the longitudinal modulus of  elasticity, EcL, 
of  unidirectional fibre-reinforced composites.  The 
existence of  the interphase material has been taken 
into account and an exponential mode of  variation of  
the interphase modulus Ei(r) with the polar radius, r, 
was assumed. Moreover, the effect of  an abrupt vari- 
ation of  the elastic modulus at r = rr on the overall 
longitudinal modulus of  the composite was studied. It 
was found that 

(i) Predicted EcL values are insensitive to the mode 
of  E~(r) variation as well as to the abrupt variation 
of  the modulus at r = rr. 

(ii) Theoretical predictions agree well with both 
other theories and experimental results. 

(iii) The discontinuity of  the modulus at r = rr is 
expected to affect mainly the stress and strain fields 
around the inclusion. 
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Figure 5 Variation of  predicted ECL values for c~ = fl = 1 against 
filler volume fraction U r. ( - - -  parabolic, - - . - -  [63], - -  
mixture law, exponential (~ = /3 = 1)). 
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